Structure Cristalline du Tétramétaphosphate de Calcium–Ammonium Dihydraté: Ca(NH4)₂P₄O₁₂.2H₂O

PAR ISAAC TORDJMAN, RENÉ MASSE ET JEAN-CLAUDE GUITEL

Laboratoire des Rayons X, CNRS, B.P. 166, Centre de Tri, 38042 Grenoble Cédex, France

(Reçu le 25 septembre 1975, accepté le 6 octobre 1975)

The unit cell of Ca(NH₄)₂P₄O₁₂.2H₂O is monoclinic, $P2_1/n$, with a=16.783 (10), b=10.888 (6), c=7.913 (2) Å, $\beta=90.92$ (8)° and contains four formula units. The crystal structure was solved from single-crystal diffractometer data by direct methods and refined by a least-squares method. The structure is a three-dimensional framework of P₄O₁₂ ring anions linked by cations and water molecules.

Préparation

L'action de l'eau maintenue à 0 °C sur P_4O_{10} produit l'acide tétramétaphosphorique: $P_4O_{10} + 2H_2O \rightarrow H_4P_4O_{12}$. On ajoute dans la solution d'acide tétramétaphosphorique: CaCO₃ et NH₄HCO₃ en proportions stoechiométriques:

$$CaCO_3 + 2NH_4HCO_3 + H_4P_4O_{12} \rightarrow Ca(NH_4)_2P_4O_{12} + 3CO_2 + 3H_2O.$$

On évapore ensuite lentement la solution vers 40 °C, il cristallise: $Ca(NH_4)_2P_4O_{12}.2H_2O$ sous forme de longues aiguilles à section carrée.

Données cristallographiques

Ca(NH₄)₂P₄O₁₂. 2H₂O est monoclinique. Sa maille affinée à partir de données enregistrées au diffractomètre automatique est: a=16,783 (10), b=10,888 (6), c=7,913 (2) Å, $\beta=90,92$ (8)°, V=1445 (3) Å³, $d_x=1,97$, $d_{mes}=2,03$ g cm⁻³, Z=4, groupe spatial $P2_1/n$.

Données expérimentales

Les intensités diffractées ont été mesurées à l'aide d'un diffractomètre automatique Philips, à la longueur d'onde du Mo, avec monochromateur; dimensions du cristal: $0,10 \times 0,10 \times 0,10$ mm, domaine de mesure: $3-30^{\circ} \theta$, mode de mesure: balayage ω , largeur de balayage: $1,60^{\circ}$, vitesse de balayage: $0,03^{\circ}$ s⁻¹, nombre de réflexions mesurées: 2380, nombre de réflexions utilisées pour l'affinement ($F_a > 15$): 1693.

Détermination de la structure

L'analyse structurale a été entreprise au moyen de méthodes directes. Une tentative de résolution de la structure à l'aide du programme MULTAN (Main, Woolfson & Germain, 1971) n'aboutit pas à la bonne solution. Nous avons alors choisi un ensemble de neuf phases symboliques et recherché la combinaison de phases la plus probable parmi les 512 possibles (2⁹), par la détermination des maxima de la fonction de phase \mathscr{F} (Riche, 1973). Cette recherche a été entreprise au moyen du programme *DEVIN* du même auteur. Elle nous a ramené à quatre combinaisons possibles $(\mathcal{F} > 70)$. Pour chacune de ces combinaisons et à l'aide de la troisième partie de MULTAN (FASTAN), nous avons généré les signes de 300 facteurs de structure normalisés (E > 1.35) et retenu celle qui correspond à la meilleure figure de mérite (|ABSFOM| = 1,30).* Une sommation de Fourier réalisée à partir de cette combinaison révèle alors la totalité de la structure. Une série d'affinements par une méthode de moindres carrés à matrice complète (Prewitt, 1966), écartant les réflexions faibles, aboutit à $R_F = 7\%$ pour 900 réflexions. Un grand nombre d'intensités utilisées ont une valeur faible. $R_F = 10\%$ sur 1693 réflexions. Les paramètres de position atomique sont consignés dans le Tableau 1, les facteurs de température anisotropes dans le Tableau 2 (ils ont été calculés et affinés d'après les 900 meilleures réflexions, R = 7%), les distances interatomiques et angles des liaisons dans les Tableaux 3, 4 et 5.*

Tableau 1. Coordonnées cristallographiques $(\times 10^4)$ et les facteurs de température isotropes des atomes

	x	У	Z	B
Ca	6869 (1)	5449 (2)	79 (3)	1,62
P(1)	5556 (2)	6936 (3)	7071 (5)	1,61
P(2)	5587 (2)	6571 (3)	3382 (4)	1,27
P(3)	7082 (2)	7883 (3)	3230 (4)	1,17
P(4)	7174 (2)	7866 (3)	6884 (4)	1,14
O(L12)	5680 (4)	6221 (7)	5383 (9)	1,24
O(L43)	7312 (4)	7316 (7)	5057 (10)	1,41
O(L14)	6228 (4)	8020 (8)	6933 (10)	1,36
O(L23)	6118 (4)	7793 (8)	3248 (10)	1,55
O(E11)	5757 (5)	6150 (8)	8471 (10)	2,40
O(E12)	4790 (5)	7546 (9)	7037 (13)	3,90
O(E41)	7467 (4)	6917 (8)	8118 (10)	1,47
O(E42)	7499 (5)	9117 (8)	7017 (10)	1,98
O(E21)	4749 (4)	6953 (8)	3031 (10)	1,82
O(E22)	5970 (5)	5537 (8)	2445 (10)	2,22
O(E31)	7404 (4)	7074 (8)	1941 (10)	1,67
O(E32)	7269 (5)	9202 (8)	3190 (10)	2,09
NH₄(1)	1545 (6)	1235 (9)	9882 (13)	2,50
NH₄(2)	930 (8)	4248 (13)	2922 (17)	6,53
H ₂ O(1)	1049 (5)	1389 (8)	5009 (11)	2,33
$H_2O(1)$	979 (7)	4491 (3)	6411 (16)	7,43

^{*} La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 31438: 36 pp., 1 microfiche). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

Tableau 2. Facteurs de température anisotropes $\beta_{ij} \times 10^4$

Description de la structure

 $Ca(NH_4)_2P_4O_{12}$. $2H_2O$ est un tétramétaphosphate. Le motif est constitué par quatre cycles P_4O_{12} se déduisant

l'un de l'autre par un opérateur de symétrie \overline{I} ou 2₁. Ils définissent des cavités importantes dans lesquelles se logent les cations Ca²⁺, NH₄⁺ et les molécules d'eau. Le cycle P₄O₁₂ n'a pas de symétrie propre. La Fig. 1

	β_{11}	β22	β ₃₃	β_{12}	β_{13}	β_{23}
Ca	15 (1)	33 (2)	63 (4)	1 (1)	-2(1)	0 (3)
P(1)	8 (1)	46 (3)	68 (7)	0 (2)	5 (2)	3 (4)
P(2)	6(1)	35 (3)	62 (6)	-2(1)	3 (2)	-4(4)
P(3)	13 (1)	26 (3)	32 (6)	-5(2)	-1 (2)	-2(4)
P(4)	11 (1)	17 (3)	52 (6)	-3(2)	0 (2)	2 (4)
O(L12)	7 (3)	42 (8)	36 (15)	-5(4)	-11(5)	-1(9)
O(L43)	10 (3)	33 (8)	58 (15)	-11 (4)	0 (5)	-3(9)
O(L14)	9 (3)	33 (8)	56 (15)	2 (4)	6 (5)	-6(9)
O(L23)	20 (3)	16 (8)	64 (16)	9 (4)	4 (6)	6 (9)
O(E11)	22 (4)	55 (10)	79 (18)	-20(5)	-9 (7)	-9(11)
O(E12)	19 (4)	75 (12)	243 (27)	7 (5)	-11(8)	-46 (14)
O(E41)	9 (3)	41 (9)	58 (16)	-5 (4)	-7 (6)	8 (10)
O(E42)	19 (4)	51 (9)	51 (16)	-15(5)	1 (6)	1 (10)
O(E21)	11 (3)	58 (9)	59 (16)	-3(5)	0 (6)	12 (10)
O(E22)	32 (4)	42 (9)	42 (15)	- 15 (5)	16 (6)	- 5 (10)
O(E31)	10 (3)	49 (8)	60 (16)	-4(5)	-4 (6)	-11(11)
O(E32)	29 (4)	33 (9)	56 (17)	2 (5)	-9(7)	-1 (10)
NH₄(1)	5 (4)	72 (13)	138 (25)	-8(6)	6 (8)	-16 (15)
NH₄(2)	62 (9)	97 (19)	315 (39)	12 (9)	-6 (15)	- 57 (22)
H₂O(1)	23 (4)	38 (9)	104 (19)	2 (15)	4 (7)	4 (11)
H ₂ O(2)	75 (8)	137 (18)	289 (33)	-27(10)	-29(13)	37 (22)

Fig. 1. Projection (a,c) de Ca $(NH_4)_2P_4O_{12}$. 2H₂O.

Tableau 3. Distances interatomiques (Å) dans le cycle P_4O_{12}

P(1) - O(L12)	1,564 (8)	P(3) - O(E31)	1,459 (9)
P(1) - O(L14)	1,639 (9)	P(3) - O(E32)	1,471 (9)
P(1) - O(E11)	1,437 (9)	P(4) - O(L43)	1,587 (9)
P(1) - O(E12)	1,449 (9)	P(4) - O(L14)	1,600 (8)
P(2) - O(L12)	1,635 (8)	P(4) - O(E41)	1,500 (9)
P(2) - O(L23)	1,607 (9)	P(4) - O(E42)	1,470 (9)
P(2) - O(E21)	1,492 (8)	P(1) - P(2)	2,950 (5)
P(2) - O(E22)	1,500 (9)	P(1) - P(4)	2,908 (5)
P(3) - O(L43)	1,614 (8)	P(2) - P(3)	2,895 (5)
P(3) - O(L23)	1,624 (8)	P(3)-P(4)	2,895 (5)

représente une projection (a, c) de la structure. Le plan du cycle P_4O_{12} est distinct du plan (a, c). Les Tableaux 3 et 4 donnent les distances et angles de liaison dans le cycle P_4O_{12} . Le site du cation $NH_4(1)$ a sept atomes d'oxygène comme premiers voisins appartenant à quatre cycles différents. $NH_4(2)$ possède quatre atomes d'oxygène comme premiers voisins dont une molécule d'eau. L'atome de calcium a sept voisins oxygène dont une molécule d'eau. Le Tableau 5 donne les distances cation-oxygène.

Essai de localisation des atomes d'hydrogène dans les molécules d'eau

Un essai de localisation des atomes d'hydrogène des molécules d'eau a été tenté par minimisation de leur énergie électrostatique. Les calculs ont été effectuées à l'aide d'un programme basé sur une méthode s'inspirant des travaux de Bertaut (1952). Un article à ce sujet pourra être publié ultérieurement. Les résultats obtenus sont consignés dans le Tableau 6.

Fig. 2. Positions calculées des atomes d'hydrogène des molécules d'eau.

Tableau 4. Angles entre vecteurs interatomiques (°) dans le cycle P_4O_{12}

O(L12) - P(1) - O(L14)	101,6 (4)
O(L12) - P(1) - O(E11)	109,2 (5)
O(L12) - P(1) - O(E12)	110.0 (5)
O(L14) - P(1) - O(E11)	109,1 (5)
O(L14) - P(1) - O(E12)	106.3 (5)
O(E11) - P(1) - O(E12)	119.0 (6)
O(L12) - P(2) - O(L23)	102,3 (4)
O(L12) - P(2) - O(E21)	108,7 (4)
O(L12) - P(2) - O(E22)	105,6 (4)
O(L23) - P(2) - O(E21)	106,3 (5)
O(L23) - P(2) - O(E22)	110,3 (5)
O(E21)-P(2)-O(E22)	121,9 (5)
O(L43) - P(3) - O(L23)	101,2 (4)
O(L43) - P(3) - O(E31)	108,0 (5)
O(L43) - P(3) - O(E32)	110,2 (5)
O(L23) - P(3) - O(E31)	110,6 (5)
O(L23) - P(3) - O(E32)	105,8 (5)
O(E31) - P(3) - O(E32)	119,5 (5)
O(L43) - P(4) - O(L14)	102,8 (4)
O(L43) - P(4) - O(E41)	106,4 (4)
O(L43) - P(4) - O(E42)	110,8 (5)
O(L14) - P(4) - O(E41)	111,9 (4)
O(L14) - P(4) - O(E42)	105,6 (5)
O(E41)-P(4)-O(E42)	118,3 (5)
P(1) - O(L12) - P(2)	134,5 (5)
P(3) - O(L43) - P(4)	129,5 (5)
P(1) - O(L14) - P(4)	127,7 (5)
P(2) - O(L23) - P(3)	127,2 (5)

 Tableau 5. Distances interatomiques (Å) dans les environnements des cations

2,372 (9)	$NH_4(1) - O(E41)$	3,04 (1)
2,456 (8)	$NH_4(1) - O(E42)$	2,94 (1)
2,459 (8)	$NH_4(1) - O(E21)$	2,86 (1)
2,428 (8)	$NH_4(1) - O(E22)$	2,88 (1)
2,464 (9)	$NH_4(1) - O(E31)$	2,94 (1)
2,399 (9)	$NH_4(2) - O(L14)$	3,12 (1)
2,432 (9)	$NH_4(2) - O(E41)$	3,10 (1)
3,07 (1)	$NH_4(2) - O(E21)$	2,84 (1)
3,04 (1)	$NH_4(2) - H_2O(2)$	2,77 (1)
	2,372 (9) 2,456 (8) 2,459 (8) 2,428 (8) 2,464 (9) 2,399 (9) 2,432 (9) 3,07 (1) 3,04 (1)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Tableau 6. Coordonnées de H et distances des liaisons H–O

		x	У	Z	
$H_2O(1)$	Ηí	0,061	0,125	0,425	
	$H_1^{\prime\prime}$	0,091	0,205	0,577	
$H_2O(2)$	H_2'	0,077	0,368	0,672	
	$H_2^{\prime\prime}$	0,140	0,468	0,717	
$H_1' - O(E21) = 2.04 \text{ Å}$			$H'_2 - O(E12) = 1,82$ Å		
$H_1'' - O(E12) = 2,14$			$H_2^7 - O(E32) = 2,06$		

Soulignons que O(E12) et O(E21) ne sont pas liés aux cations Ca^{2+} et que O(E32) est lié à Ca^{2+} , très faiblement à $NH_4(1)$. La Fig. 2 donne les résultats de ce calcul.

Références

BERTAUT, E. F. (1952). J. Phys. Radium, 13, 499-505.

- MAIN, P., WOOLFSON, M. M. & GERMAIN, G. (1971). MULTAN. A Computer Program for the Automatic Solution of Crystal Structures. Univ. of York.
- PREWITT, C. T. (1966). SFLS-5. Oak Ridge National Laboratory Report ORNL-TM-305.
- RICHE, G. (1973). Acta Cryst. A 29, 133-137.